

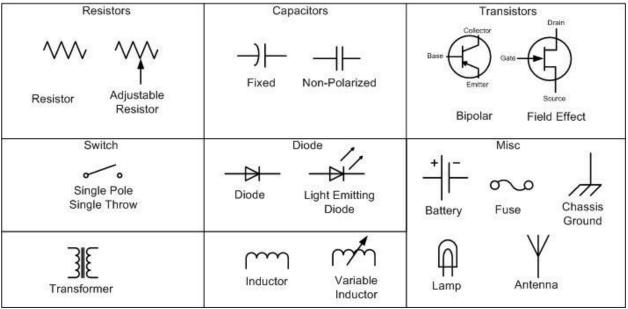
E = Electromotive Force (Volts)
I = Current (Amps) Intensity

R = Resistance (Ohms)

P = Power (Watts) I = Current (Amps) E = Electromotive Force (Volts) 300 f \lambda

f = frequency in MHz λ = wavelength

Voltage stays the same in a parallel circuit Current stays the same in series circuit


Most of the questions involve moving the decimal point 3 positions

Question	Answer	Operation
One microvolt	One one-millionth of a volt	
1,000,000 picofarads	1 microfarad	
One kilovolt	One thousand volts	Add 3 zeros (move decimal point right 3 positions)
3.525 MHz	3525 kHz	Add 3 zeros (move decimal point right 3 positions)
1,500,000 hertz	1500 kHz	Subtract 3 zeros (move decimal point left 3 positions)
500 milliwats	0.5 watts	Subtract 3 zeros (move decimal point left 3 positions)
2425 MHz	2.425 GHz	Subtract 3 zeros (move decimal point left 3 positions)
3000 milliampere	3 amperes	Subtract 3 zeros (move decimal point left 3 positions)
28,400 kHz	28.400 MHz	Subtract 3 zeros (move decimal point left 3 positions)

10 -6 1/1,000,000 one millionth Micro 1/1,000 Milli one thousandth 10 -3 1,000 10³ Kilo one thousand 1,000,000 10⁶ one million Mega 1,000,000,000 10⁹ one billion Giga

Amateur Radio Bands

HF	3 MHz	30 MHz
VHF	30 MHz	300 MHz
UHF	300 MHz	3000 MHz

Transistors – made up of three layers of semiconductor material. Function as a switch or amplifier Capacitors- made of two conductors separated by an insulator. Stores energy in an electric field Inductors- coil of wire. Stores energy in a magnetic field

Oscillator/tuned circuit/filter – capacitor and an inductor either in series or parallel Diode- allows current flow in only one direction. Leads are Anode (+) and Cathode (-) [stripe]

PHONETICS

ITI	ΙÞ	honetics	

A = ALPHA

B = **BRAVO**

C = CHARLIE

D = **DELTA**

E = ECHO

F = FOXTROT

G = GOLF

H = HOTEL

I = INDIA

J = JULIET

K = KILO

L = LIMA

M = MIKE

N = **NOVEMBER**

O = OSCAR

P = PAPA

Q = QUEBEC

R = ROMEO

S = SIERRA

T = TANGO

U = UNIFORM

V = VICTOR

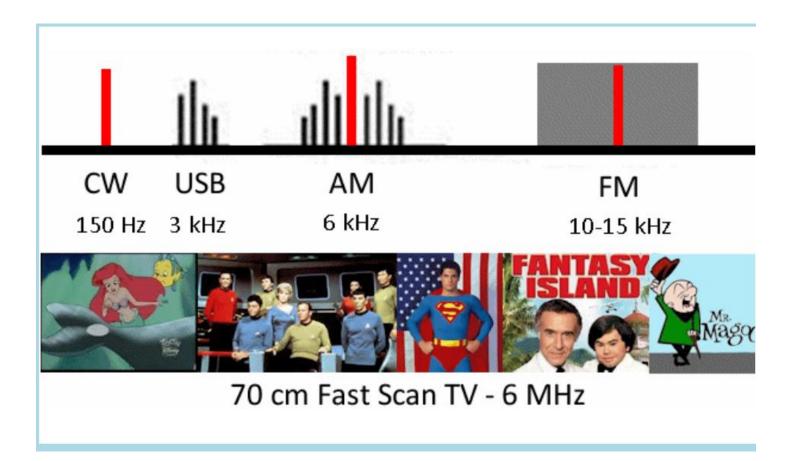
W = WHISKEY

X = X-RAY

Y = YANKEE

Z = **ZULU**

QRM	<u>Interference</u>
QRN	Static
QRO	Increase Power
QRP	Decrease Power
QRT	Stop Transmission
QRZ	Who is calling me?
QSB	Varying signal strength
QSL	Did you receive the message?
QSO	Communication, message
QSY	Change frequency


COMMON Q Codes

QTH

QST

Location

General call

Web Resources

Emergency Amateur Radio Club of Hawaii Ham Education Amateur Radio Emergency Service (Hawaii) Amateur Radio Relay League Federal Communications Commission Department of Emergency Management Ron Hashiro Hawaii Repeaters QRZ

EHam
Gigaparts
Ham Radio Outlet
DX Engineering
Chirp (Free radio programming software

Miklor

earchi.org
hameducation.org
hawaiiares.net
arrl.net
fcc.gov
Honolulu.gov/dem
qsl.net/ah6rh
hawaiirepeaters.net
qrz.com

eham.net/reviews gigaparts.com (retail) hamradio.com (retail) dxengineering.com (retail) chirp.danplanet.com miklor.com (Chinese radio info)